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ABSTRACT

In the field of genome assembly research where assemblers are dominated by de Bruijn graph-

based approaches, string graph-based assembly approach is getting more attention because of its

ability to losslessly retain information from sequence data. Despite the advantages provided by

a string graph in repeat detection and in maintaining read coherence, the high computational cost

for constructing a string graph hinders its usability for genome assembly. Even though different

algorithms have been proposed over the last decade for string graph construction, efficiency is

still a challenge due to the demand for processing a large amount of sequence data generated by

NGS technologies. Therefore, in this thesis, we provide a novel, linear time and alphabet-size-

independent algorithm SOF which uses the property of irreducible edges and transitive edges to

efficiently construct string graph from an overlap graph. Experimental results show that SOF is

at least 2.3 times faster than the string graph construction algorithm provided in SGA, one of the

most popular string graph-based assembler, while maintaining almost the same memory footprint

as SGA. Moreover, the availability of SOF as a subprogram in the SGA assembly pipeline will give

user facilities to access the preprocessing and postprocessing steps for genome assembly provided

in SGA.
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CHAPTER 1: INTRODUCTION

Obtaining whole genome sequence exactly as it is present in the chromosomes of living cells has

always been the area of interest for biologists. That motivated the rise of different sequencing

technologies in the last four decades. These sequencing machines can generate fragments of a se-

quence where the length of the sequence varies depending on the technology. However, sequencing

machines do not have the capability to generate the entire nucleotide sequence as it is present in the

chromosome. That opens for computer scientists an opportunity to be engaged in Sequence As-

sembly Problem. Sequence Assembly Problem is formulated as given a set of substrings, usually

called reads which are generated from string S, the problem is to construct the superstring S.

Sequence Assembly Problem is usually divided into two subcategories: de novo assembly and

reference-based assembly. In the reference-based assembly, a reference sequence is used as a

guide to the assembly process, but in the de novo assembly, assembly is performed without taking

any information from a reference sequence. In reference-based assembly, usually, the goal is to

map or align reads to the most probable locus in the genome sequence from which it originated.

On the other hand, de novo assembly is used to construct a chain of reads which represents the

original sequence with high accuracy. Despite the difference in problem formulation and goals,

sometimes both of these approaches are used in combination.

To perform de novo assembly, almost every methods or approach utilizes some kind of graph data

structure to represent the relationship between reads. Two of the most popular approaches are de

Bruijn graphs and Overlap graphs (and its reduced form string graph). The basic idea of a de

Bruijn graph consists of creating a graph where a set of distinct k-mers (i.e. string of length k)

generated from the sequence reads represents vertices and there is an edge between vertices if there

is a (k − 1)-mer overlap between k-mers.
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String graph-based genome assembly is another popular alternative to de Bruijn graph based ap-

proach. Myers first provided the definition of string graph [Mye05] which is based on the concept

of overlap graph. In an overlap graph, read sequence represents a vertex. There is an edge be-

tween two vertices if there is an overlap between two corresponding reads. But this definition of

overlap graph creates many redundant vertices and edges which makes it difficult to be stored in a

space-efficient way. Myers defined string graph in such a way that a string graph neither contains

redundant vertices nor redundant edges. In this definition, a vertex is considered redundant if the

corresponding read is identical to or a substring of another read. Also, an edge is considered re-

dundant if there is a path which represents an assembly same as the assembly constructed from that

edge. This type of edge is called transitive edge. If an edge is not transitive, it is called irreducible.

Since a string graph does not split a read sequence into k-mers, it provides advantages over de

Bruijn graph during the earlier processing stages by distinguishing repeats longer than k situated

within a read sequence. Besides, a path in the string graph represents a valid assembly (read

coherence property) which is not always true for a de-Bruijn graph. Also, a string graph retains all

the information that can be inferred from the read data. Therefore, depending on the nature of the

problem, a string graph can sometimes be more useful than a de Bruijn graph.

However, constructing a string graph is computationally challenging as it requires identifying over-

laps between reads and removal of transitive edges. Many different algorithms have been proposed

to perform assembly through the construction of a string graph. Edena [HFF+08] is one of the

earliest string graph-based assembler that computed overlaps between reads using suffix array and

performed transitive edge removal using the approach mentioned in [Mye05]. [BBC14] developed

string graph-based assembler using hashing and bloom-filter.

Yet, the massive amount of sequencing data produced by Next Generation Sequencing (NGS)

technologies poses a constant demand for the time and space efficient algorithm to construct string

2
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graph. To tackle this challenge, different algorithms have been proposed based on the self-indexing

data structures like FM index [FM05]. Through the use of self-indexing data-structures, overlap

identification from the pool of a large amount of sequence data has become efficient. Even though

self-indexing data structures provide efficiency in overlap detection, transitive edge removal from

the overlap graph still remains a challenge. Most popular string graph-based assembler SGA

[SD12] uses BWT of the reverse reads to identify transitive edges which is a comparatively slower

process than the overlap identification. Besides, storing two BWTs in the memory causes high

memory footprint.

Recently, [BVP+16] have developed a space-efficient string graph construction algorithm LSG.

LSG uses external memory algorithm for building a string graph which consequently reduces the

main memory consumption. However, its use of external memory makes itt very slow compared to

SGA. To overcome the time efficiency issue, the same lab that developed LSG, developed a time

efficient string graph construction algorithm FSG [BDVP+17]. But this algorithm takes 2-3 times

more space than SGA.

It is clear that to make string graph practical for usage, an efficient algorithm is needed that can

make a good balance between time and space. In this thesis, we propose a novel string graph

construction algorithm SOF which is at least 2.3 times faster than SGA while it takes almost the

same amount of memory as SGA. SOF achieves time efficiency by using properties of transitive

edges. It achieves space efficiency by storing overlaps in external memory.

NGS technologies not only influenced the efficient algorithm construction but also influenced the

growth of research in metagenomics as these technologies provide unprecedented access to the

bacterial data analysis in a culture-independent way. It is an important task in metagenomics to

identify functional and metabolic potential present in the sequenced microbial community. This

can be done through homology detection where a reference sequence is used to identify signifi-

3
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cantly similar reads from the pool of sequence data. Recently [ZYY17] has shown that string graph

can also be useful in peptide sequence assembly and homolog detection from metagenomic data.

Our proposed algorithm SOF has a property that its transitive edge removal process is alphabet

size independent. This property is particularly useful where alphabet size of the sequence data is

large. Hence we predict that our proposed algorithm has the potential to be the best method in

metagenomic peptide assembly.

Our implementation is available in the open source code repository [Mor]. To provide better user

experience, instead of creating a standalone software tool, we have developed our program as a

plug-in of SGA which provides a user access to all the preprocessing and postprocessing tools

available in SGA.

1.1 Thesis Organization

Rest of the thesis is organized in the following way:

Chapter 2 provides the background of the research. In this chapter, we discuss earlier research on

string graph construction algorithm. At the end of this chapter, we discuss our contribution and the

novelty of our work.

Chapter 3 discusses in detail about our proposed string graph construction methodology. In the

beginning of this chapter, we discuss relevant definitions, data-structures and proofs which sup-

ports the explanation of the proposed algorithm. Finally, we discuss about the complexity and

implementation details of the algorithm.

In chapter 4, we discuss about the experimental procedure we followed to measure the performance

of SOF. We also discuss about the results we have obtained by conducting the experiment. We

4
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conclude this chapter by showing validation of our result.

Finally, we conclude our discussion by providing a summary of this thesis. We also discuss about

possible future work plan in this chapter.

5
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CHAPTER 2: LITERATURE REVIEW

Genome sequencing is the process of determining the sequence of bases in a genome. Current

sequencing technologies do not allow us to sequence a genome in its entirety. Instead, a sequencing

machine can only generate sub-sequences of a genome. Each of the subsequence is called read.

Therefore, a set of reads is the outcome of a sequencing process performed on the genome of

an individual. Two reads can have overlap in sequence and this overlap is utilized to generate

contiguous sequence through the process known as genome assembly. Since the assembly process

is performed on reads sequences, the quality of a genome assembly is strongly related to the quality

of reads generated by the sequencing machine.

In the last 40 years, different sequencing technologies have emerged with different characteristics.

First one is the Sanger sequencing method developed in 1977 by Frederick Sanger [SNC06] which

dominated the sequencing technology for 30 years. This technology has the ability to produce reads

of length up to 1000 base pairs (bp) with lower error rate (10−4 to 10−5) [KK10]. However, being

slow and costly precluded this technology to be widespread. In 2005, new sequencing technolo-

gies have emerged which are called Next-Generation Sequencing (NGS) Technologies [LLL+14].

NGS revolutionized genome sequencing by reducing the cost. Reads produced by these technolo-

gies are in the range of 35 to 400 base pairs which are shorter than the reads produced in Sanger

Sequencing. Short read sequences generated in NGS technology poses a challenge in repeat de-

tection when repeat sequence length is longer than read length. Despite this shortcoming, being

faster and cheaper than Sanger Sequencing [GMM16] made different NGS machines (Illumina,

Ion Torrent, SOLiD, 454) popular over time [DIS+16]. Since 2011 new sequencing technologies

referred to as Third-Generation Sequencing have been proposed to overcome the limitation caused

by short read in NGS. Even though this new sequencing technology produces long read sequences

(1000 bp to 200000 bp), it has a much higher error rate (10% - 15%) than other existing technolo-

6
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gies [GMM16]. Therefore, Third generation technologies are now used in combination with NGS

technologies.

Despite the difference in technologies, every sequencing machine has one common characteristic

and that is to generate a set of subsequences (i.e. reads). The next challenge is to assemble these

subsequences to generate a sequence which is the closest approximation of the original sequence.

This problem is known as sequence assembly problem in bioinformatics. This problem is generally

classified into two major categories – de novo assembly and reference-based assembly. In a de

novo assembly, the assembly operation is performed using only the set of read sequences. On the

other hand, in a reference-based assembly, a reference sequence is used as a guide in the assembly

process. In reference-based assembly, the goal is to map each read to the most probable locus in

the reference genome whereas in de novo assembly, the goal is to build contiguous sequences by

creating a chain of reads. Even though in this thesis, we primarily focus on strategies related to de

novo assembly, our proposed method can also be applicable in reference-based assembly.

There are two prominent graph data structures used in de novo assembly – de Bruijn graph and

string graph. Pevzner [PTW02] defines the de Bruijn graph used for DNA assembly problem in

this way: Given a set of reads S = s1, s2, ..., sn, the de Bruijn graph G(Sk) with vertex set Sk−1

(the set of all (k − 1)-mers from S) is defined as follows. A (k − 1)-mer v ∈ Sk−1 is joined

by a directed edge with an (k − 1)-mer w ∈ Sk−1, if Sk contains an k-mer for which the first

k − 1 nucleotides coincides with v and the last k − 1 nucleotides coincides with w. By allowing

the multiplicity of edges, genome assembly problem can be represented as a Euler path problem

where an assembly is obtained by visiting every path exactly once. Construction of de Bruijn graph

requires performing exact matches between k-mers which can be done in linear time using a hash

table. This simplicity in construction process made de Bruijn graph the dominant method of de

novo assembly.

7
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However, de Bruijn graph has some limitations. Since a de Bruijn graph breaks reads into k-mers,

it may fail to retain all information that is obtainable from a read set. Therefore, a tour in the

de Bruijn graph may not represent a valid sequence. So, an effort was made to develop a string-

labeled graph such that a tour in the graph would represent a valid sequence and the graph has

few extraneous edges and alternate tours as possible. This effort led to the first formalization of

the concept of string graph by Eugene Myers [Mye05]. Formal definition of the string graph is

discussed in section 3.1.2.

Because of the properties of string graph, it provides some advantage over de Bruijn graph. One of

the properties of a string graph is read coherence which means that any path in the graph represents

a valid assembly of the reads. Since this property does not hold true in de Bruijn graph, in the de

Bruijn graph-based assembly, a separate procedure is required to restore read coherence. Also, a

string graph provides an advantage in disambiguation of repeats. Since a string graph does not

break reads into k-mers, it can immediately distinguish repeat larger than k but smaller than read

length, whereas de Bruijn graph G(Sk) can distinguish repeat larger than k only in its later stages.

On the other hand, string graph is computationally expensive than the de Bruijn graph. De Bruijn

graphs are easier to store and compute because nodes and edges have a consistent structure. But in

a string graph, overlap identification requires much computation. Besides, by definition, a string

graph does not contain any transitive edges. Therefore, a string graph construction algorithm needs

to provide an efficient transitive edge reduction process.

In other words, there are two main computationally intensive tasks in string graph construction: 1.

construction of overlap graph by identifying all overlaps between sequence reads. 2. Removal of

transitive edges from the overlap graph. In [Mye05], Myers also provided a linear time transitive

reduction algorithm. In this transitive reduction algorithm, edges of a node in overlap graph are

traversed in ascending order of edge label length. For a node x, if an adjacent node u can be tra-

8
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versed through another adjacent node w where the label of (x,w) is shorter than (x, u), then (x, u)

is considered transitive. In this way, all transitive edges are identified and consequently removed.

Even though it is a linear time algorithm, it requires whole overlap graph to be stored in memory

which makes this algorithm memory intensive. Edena [HFF+08] is one of the earliest string graph-

based assembler which computes overlaps between reads using suffix array and performs transitive

edge removal using the approach mentioned in [Mye05].

With the emergence of NGS technologies, a massive amount of sequence data with high coverage

rate has been produced. Therefore, identifying overlaps between reads from the set of millions

of reads was a major challenge for a string graph algorithm to be considered useful in genome

assembly. String graph construction algorithm developed by [SD10] which was later included as

the part of string graph-based assembly pipeline SGA [SD12] has made a major breakthrough in

this regard. By using self-indexing data structure FM-index [FM05], SGA has made overlap detec-

tion phase of the string graph construction faster. In the overlap identification step, SGA performs

backward search on BWT [BW94] for each read r. For each suffix s of the read r, it identifies a

interval Q in BWT such that this interval represents a read set rs where all of reads have prefix s.

In this way, it identifies all overlaps for all suffixes of r. In the next step, SGA performs transitive

removal by using BWT of the reverse reads. SGA performs a rightward extension of each overlap

interval by adding all different characters from the alphabet set and checking whether this addi-

tion leads to the terminal of some reads represented in the Q. If a read is found to be terminated,

this read is considered to form an irreducible edge with r. Rest of reads are considered transitive

edge forming reads and consequently discarded. Currently, SGA is one of the most popular string

graph-based assembler [SN18] thanks to its assembly pipeline and stable implementation. Read-

joiner [GK12], another string graph-based assembler, showed improvement over SGA. Readjoiner

identifies overlaps by computing a proper subset of suffix-prefix matches and removes transitive

edges by performing a traversal algorithm on the graph.

9
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Alongside the self-indexing data structure, hashing and a probabilistic membership data structure

called bloom-filter [Blo02] is shown to be useful in de novo assembly algorithms. [CR12] first

showed the use of hashing and bloom-filter for the efficient representation of a de Bruijn graph.

Their results were further improved by the use of cascading Bloom filter [SSK13]. [BBC14] first

presented that the hashing and bloom-filter can also be effective for the construction of a string

graph. Their method detects overlaps by using incremental hash function Karp-Rabin [KR10] for

all relevant prefixes of a particular read. To ensure memory efficiency, it uses the bloom filter to

store hash values for different prefix length of each read. To perform transitive edge reduction,

it follows a strategy of the right extension similar to SGA. Since Bloom Filter is a probabilistic

data structure, set of identified irreducible edges may contain false positive and false negative

reads which are later removed by performing a verification step. Performance of this Hashing

and Bloom-Filter based method is comparable with the older version of SGA. But it did not show

significant improvement in comparison with the Readjoiner and the recent implementation of SGA.

Recently, external memory based approach LSG [BVP+16] has been proposed which uses BWT

indexes to construct string graph. Through the use of external memory, this approach is shown to

be very memory efficient. In comparison to the SGA, this approach only takes 2% of main memory

used by SGA. Indeed, use of the external memory made the program slower than the SGA.

To solve the time efficiency issue, the same lab that developed LSG developed another algorithm

FSG [BDVP+17] which is 2-3 times faster than SGA. To collect irreducible edges, FSG performs

right extension using BWT of the reverse reads, which is the same approach as SGA. However,

FSG achieves time efficiency by extending only the unique overlaps. Another reason for FSG’s

performance improvement is the indexing of both forward reads and reverse complement of reads.

This obviates the necessity to identify overlaps of the reverse complement of a read separately.

Since FSG performs BWT indexing of reads and their reverse complement, BWT now takes twice

as much memory as SGA. Even though FSG was able to improve time efficiency, it has a weakness

10
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in memory management.

Clearly, even though there are many algorithms proposed for string graph construction, still there

is a need for an algorithm which can improve speed without compromising space efficiency. To fill

this gap, in this thesis, we propose a novel and linear time efficient algorithm SOF (String graph

construction by Overlap Filtering) for constructing a string graph. Experiments show that SOF is

at least 2.3 times faster than SGA while it takes approximately same amount of memory as SGA.

Algorithms like SGA and FSG which uses FM-index [FM05] to construct a string graph, follows

two steps: 1. identify all of the overlaps using FM-index 2. perform an extension of the overlaps

to identify irreducible edges. While SOF follows a similar approach in computing overlaps by

using FM-index, it applies a completely different approach in removing transitive edges. Using

properties of transitive edges, SOF can efficiently remove transitive edges without performing any

extension of the overlaps. As a result, SOF obviates the necessity to load two BWTs (both for

forward and reverse reads) simultaneously in the memory and achieves space-efficiency.

The rise of NGS technologies have also allowed us to analyze the genomic content of a microbial

community in a culture-independent way. This branch of research is called metagenomics where

genomics techniques are applied on microbial data. One of the key research in metagenomics is

to identify functional and metabolic potential present in the sequenced microbial community. This

can be done by homology detection where an annotated reference sequence is used to identify

significantly similar reads (homologs). Though there is availability of homolog detection tools

[BLA13] [AMS+97], recently a set of tools have been designed specially for homolog detection in

metagenomic data [ZYY15a], [ZYY15b], [ZYY17]. In [ZYY17], it is shown that string graph is

useful for assembly of metagenomic peptide data which can be used for search and alignment in

later steps.

In this thesis, we show that SOF has linear time computational complexity which is completely

11
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independent of the alphabet size of the sequence dataset. Therefore, we predict that SOF has the

potential to be the best alternative for constructing string graph from datasets with larger alphabet

size (e.g. protein sequence data), consequently making metagenomic homolog search more time-

efficient.

In recent years, user experience design for an application is gaining more attention while func-

tional efficiency was traditionally the concern [HR19]. With this in mind, we have implemented

SOF as a plugin of SGA assembly pipeline [Mor] which makes it easy for the user to access the

preprocessing and postprocessing steps provided in the SGA.

12
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CHAPTER 3: STRING GRAPH CONSTRUCTION BY OVERLAP

FILTERING

In this chapter, we discuss in details about our proposed algorithm SOF (String graph construction

by Overlap Filtering). We discuss some definitions, notations, and properties related to string

graph in section 3.1 which are necessary for the explanation of the algorithm described in section

3.2. Finally, we discuss about the implementation strategies in section 3.3 which we use to make

this algorithm space efficient. Implementation of this algorithm is available in the github repository

[Mor].

3.1 Preliminaries

3.1.1 Sequences

Let s be a string over alphabet Σ, s[i] be the i-th symbol of s, s[i, j] be the substring s[i][i+1]...s[j]

and |s| be the length of s. Let ri be a read sequence and R = {r1, r2, r3.rn} where n is the total

number of reads. For a genome sequence, Σ = {A, T,G,C}. We denote N as total length of all

reads, hence N =
∑n
i=1 |ri|.

3.1.2 String Graph

Concept of the string graph is based on the concept of overlap graph. In an overlap graph, read

sequence in R represents a vertex. There is an edge between two vertices if there is an overlap

between two corresponding reads. String graph is defined as a refined version of an overlap graph,

where a vertex is considered redundant if the corresponding read is identical to or substring of
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another read. Also, an edge is considered redundant if there is a path which represents an assembly

same as the assembly constructed from that edge. This type of edge is called transitive edge. If

an edge is not transitive, it is called irreducible. A string graph neither contains redundant vertices

nor transitive edges.

To define a string graph, we define the term overlap and edge in the following way: a sequence

s overlaps a sequence q and thereby forms an edge (s, q) if and only if suffix of s is the prefix of

q. In other words, in an edge (s, q), q is overlapped by s (i.e. prefix of q is the suffix of s). Let

β be the overlap sequence with minimum length of µ, α be the unmatched sequence of s and γ

be the unmatched sequence of q. In a string graph, each edge is bidirectional and each direction

contains label along with end type information dictating where the label will be added during a

walk in the graph [Mye05]. We define a tuple (label, end) for each direction. An end can be B or

E representing the position – beginning or end of the source vertex sequence respectively – where

the label should be added during a walk in the graph.

For two read sequences ri and rj where ri, rj ∈ R, if ri and rj forms an edge (ri, rj) in string

graph, two directed edge ri → rj with tuple (γ,E) and ri ← rj with tuple (α,B) are added in the

description of that string graph. For edge (ri, rj), we call label in ri → rj as forward label and

label in ri ← rj as backward label.

Now, we formally define the concept of transitive edges. Let (s, q) be an edge with forward label

γ1 and (s, r) be another edge with forward label γ2 where γ1 is the prefix of γ2. Then edge (s, r)

is defined as transitive edge [SD10].

Figure 3.1 shows a simple string graph representation based on the definition discussed in this

subsection.
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Figure 3.1: Simple string graph representation for three reads. (A) shows three overlapping reads
R1, R2, R3. (B) shows the overlap graph constructed from these reads. Since (R1, R3) is transitive,
this edge is not be present in string graph shown in (C).

3.1.3 FM Index

Like many previous algorithms [SD10][BVP+16][BDVP+17], SOF uses FM-index [FM05] to

identify overlaps between reads. SOF uses BWT for multiple strings defined in [BCR11] where

each read ri is appended with $ and $ is the lexicographically smallest symbol in Σ$ = Σ ∪ {$}.

Each end marker $ is considered a different symbol for the purpose of uniquely sorting every suf-

fixes of every read sequence. $ appended after ri is defined to be smaller than $ append after

rj if i < j. Based on this definition, we define generalized suffix array for R, SAR such that

SAR[x] = (k, j) where suffix starting from index k of read j is the xth lexicographically smallest

suffix in the set of all suffix constructed from the $ appended read set R. From the definition of

SAR, we define BWTR. If SAR[x] = (k, j), then BWTR[x] = rj[k−1] if k > 1 or BWTR[x] =$

if k = 1.
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To find the existence of a particular pattern p in sequence set R, Backward-Search algorithm

[FM05] is used on FM Index of R. Backward-Search(p) returns an interval [l, u] which repre-

sents a set of indexes x in SAR where for all l ≤ x ≤ u, SAR[x] contains start index of the suffix

which contains p as prefix.

To identify all the overlaps for a sequence, an algorithm has to detect all the sequence whose prefix

matches with the suffixes of that sequence. In the remaining part of this subsection, we discuss that

it possible to represent all of the reads in a read set by their lexicographic order. We also discuss

that from a set of lexicographic orders we can identify the set of reads which have prefixes that

match with the suffix/es of a sequence in question.

Let rank(c, i) denote total number of a character c inBWTR within position [1, i]. Since SAR rep-

resents all suffixes sorted in lexicographical order and for any x if SAR[x] = (1, j) then BWTR[x]

=$, rank($, x) in BWTR represents the lexicographic order of the read sequence rj . Conse-

quently, every read sequence can be uniquely represented by the rank of the corresponding $ sym-

bol in BWT. We call rank of $ as terminal and denote it by t. We represent a set of consecutive

terminals T in the interval form [tl, tu] and denote it by symbol p(T ) such that p(T) = [tl, tu] where

tl and tu are the lowest and highest terminal in the set T respectively . We call this interval terminal

interval.

It is important to note that a terminal fromBWTR represents the lexicographic order of a sequence

ri ∈ R, not the order i within R. To get the order within R, SOF uses Lexicographic Index Array

[SD10] denoted by LR which stores order i of each sequence ri ∈ R according to the lexicographic

order of ri. Therefore, if ri is j-th lexicographically smallest string, then LR[j] = i. Consequently,

we say that a terminal t from BWTR represents a sequence ri ∈ R if and only if LR[t] = i.

For a sequence s and index i, we call set of all terminals tx from BWTR representing sequences

ry ∈ R as overlapping terminals of s at i where s[i : |s|] = ry[1 : |s|− i+1] and LR[tx] = y. When
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all the overlapping terminals of s at i are represented in the form of terminal interval, we call this

interval overlapping terminal interval of s at i. We denote set of all overlapping terminals of s at

i by TR(s, i) and we denote TR(s) =
⋃|s|−µ+1
i=2 TR(s, i) . SOF uses findOverlaps(r, µ) algorithm

provided in [SD10], to collect all overlapping terminal intervals for a sequence r that represents

overlap of length at least µ.

3.1.4 Properties of Irreducible and Transitive Edges

In this thesis, we use an observation based on definition of transitive edges provided in [Mye05]

that if a sequence s and a sequence q forms an edge (s, q), then all the other sequences ri which

are overlapped by both s and q makes all the edges (s, ri) transitive. We formalize this observation

in the following lemma.

Lemma 1. For an edge (s, q), all edges (s, ri) are transitive where ri ∈ R and i = LR[x] for all

x ∈ TR(s) ∩ TR(q)

Proof. Let forward label for edge (s, q) be γsq. Let r be a read which is overlapped by both s and

q. Let forward label for edge (s, r) be γsr. Now, |γsr| > |γsq| must hold true because by definition

of string graph, r can not be a substring of q. Since s overlaps both q and r, γsq is the prefix of γsr.

Therefore, edge (s, r) is a transitive edge.

From this lemma, we come to the following corollary. For an edge (s, q), let βsq represent overlap

sequence. For a sequence s, let lβmax(s) be the maximum overlap length by which s overlaps other

sequences.

Corollary 1.1. For an edge (s, q), if |βsq| = lβmax(s), then edge (s, q) is irreducible.
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Proof. From lemma 1, an edge (s, q) becomes transitive when there is a sequence r such that r

overlaps q while r is overlapped by s. In other words, an edge (s, q) becomes transitive when both

the edge (s, r) and edge (r, q) are present in the overlap graph. However when a sequence q is

overlapped by sequence s with length lβmax(s), then there is no sequence which can be overlapped

by s and overlap q. Hence, (s, q) is irreducible.

3.2 Algorithm

3.2.1 Overview

SOF algorithm collects irreducible edges and removes transitive edges from the set of all overlaps.

Algorithm 1 provides the pseudo-code of the irreducible edge collection process. In this algorithm,

for each read ri, all of its overlaps are stored in a data-structure named Current Read. From the set

of overlaps of ri, all of the reads rj that form maximum overlap with ri are identified as irreducible

edge forming reads. Then all of the reads rk which are overlapped by both ri and rj are considered

as transitive edge forming reads and records of rk are subsequently deleted from the Current Read.

From the remaining overlaps of ri, next set of irreducible edges are collected and transitive edge

forming reads are removed. This process continues until no irreducible edges for ri remains to be

collected. To identify common overlaps between ri and rj , another data-structure named Overlap

Container is used. In both Current Read and Overlap Container, overlap information is stored in

the form of overlapping terminal intervals. In subsection 3.2.2 and 3.2.3, we discuss in details

about the Overlap Container data-structure and Current Read respectively. In subsection 3.2.4, we

discuss how these two data-structures are used to collect irreducible edges and remove transitive

edges.
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3.2.2 Overlap Container Construction

Overlap Container QR is a data structure that contains overlap information for all reads contained

in a read set R in the form of overlapping terminal intervals and the corresponding indexes. For

each read ri ∈ R, QR[i] contains a set of tuples in the form < I, s > where I is the overlapping

terminal interval for read ri at index s. In other words, I = p(TR(ri, s)). For a tuple v, variable v.I

denotes terminal interval stored in that tuple and v.s denotes index stored in that tuple. Overlapping

Terminal Intervals are obtained by performing findOverlaps(ri, µ) [SD10] for all ri ∈ R using a

BWTR. Therefore, R and BWTR are the parameters of Construct-Overlap-Container function.

At line 2 in Algorithm 1, Construct-Overlap-Container(R,BWTR) is called to create overlap

container QR by the use of read set R and BWTR.

3.2.3 Current Read Construction

For each read ri ∈ R, a data-structure named Current Read, denoted by Ci, is constructed in

Algorithm 1 (line 5). Ci[k] stores the overlapping terminal intervals of ri at k. Therefore, during

initialization, for an index k where 1 < k ≤ |ri| − µ + 1, Ci[k] = p(TR2(r, k)) and Ci[1] = ∅.

Initially, when Ci is constructed (line 5), there is at-most one interval in Ci[k] for all k. However,

in the next subsection, we will see that Ci[k] may contain more than one intervals due to splitting

of an interval.

3.2.4 Collecting Irreducible Edges

After construction of Ci (line 5), Algorithm 1 collects irreducible edges from Ci and filters out

transitive edges from this data structure until no irreducible edge remains to be collected (line 6-

14). At each iteration , this algorithm identifies the index idx where Ci[idx] contains all terminals

19



www.manaraa.com

representing reads that are overlapped by ri with maximum overlap (line 6). Then it takes out

all the terminal intervals I contained in Ci[idx] (line 7-8). All the read sequence rj , represented

by these terminals t ∈ I where j = LR[t], are considered to form irreducible edge (ri, rj) (line

10-11). Then using each of these reads rj , the algorithm identifies common overlapping terminals

between read ri and read rj . Since Ci and QR[j] stores the overlapping terminals for read ri and rj

respectively, RemoveTransitive function removes all the common terminals between Ci and QR[j]

from Ci (line 12-14). Reads rk represented by these common terminals are considered as transitive

edge (ri, rk) forming reads. Finally, all the irreducible edges are returned (line 15).

Now we prove that this algorithm correctly collects irreducible edges and filters out transitive

edges. Read rj , which forms maximum overlap with ri, is considered for forming irreducible edge

(ri, rj). This is correct according to corollary 1.1. Then all overlapping terminals, which represent

reads rk that are overlapped by both ri and rj , are considered as representative of reads that form

transitive edge (ri, rk). This is also a correct process of identifying transitive edges according to

lemma 1. Therefore, algorithm 1 correctly removes transitive edges from Ci.

Now we discuss some parts of the algorithm in more details . Intervals with the maximum overlap

are situated in the lowest index idxwhere Ci[idx] 6= ∅. Therefore, GetMaxOverlap() function (line

6) actually returns this index idx for which Ci[idx] contains at-least one element. The algorithm

collects all the terminal intervals I from Ci[idx]. Then these intervals are removed from Ci[idx]

(line 8) so that these intervals will not be considered again in the next iteration and the value of idx

will be different in the next iteration. Then, for each terminal x ∈ I , terminals are converted back

to their actual order j in R using Lexicographic Index Array LR (line 10). Edge (ri, rj) is stored

in set E which contains all irreducible edges (line 11). Then, all overlapping terminals of read rj

which are common to read ri are removed from Ci using RemoveTransitive(φ, ψ) function where

φ is the set of terminal intervals and ψ is a terminal interval. RemoveTransitive(φ, ψ) function

removes all the terminals common to both φ and ψ from the φ. RemoveTransitive function reduces
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or splits a interval in φ if that interval contains terminals represented by ψ. For example, suppose

φ = {[2, 10]} and ψ = [4, 6]. Then RemoveTransitive function would make φ = {[2, 3], [7, 10]}

which does not contain any terminals in ψ. If the value of ψ were [8, 12], RemoveTransitve would

reduce the interval [2, 10] to interval [2, 7]. Because of the possibility of split operation, φ may

contain multiple intervals and RemoveTransitive may have to iterate through elements of φ to

identify which interval needs to be splitted or reduced.

Finally, all irreducible edges, collected from each read ri and stored in E, are returned (line 15).

Algorithm 1
1: procedure COLLECT-IRREDUCIBLE-EDGES(R,BWTR, LR)
2: QR ← CONSTRUCT-OVERLAP-CONTAINER(R,BWTR)
3: E ← ∅
4: for each ri ∈ R do
5: Construct Ci
6: while idx← GETMAXOVERLAP() do
7: I ← Ci[idx]
8: Ci[idx]← ∅
9: for each t ∈ I do

10: j = LR[t]

11: E ← E ∪ (ri, rj)
12: for each v ∈ QR[j] do
13: if v.S < |ri| − µ then
14: REMOVETRANSITIVE(C[idx+ v.S], v.I)

15: return E

3.2.5 Complexity

Now we discuss the complexity of the proposed algorithm. Overlap container construction takes

O(N) time because for each read ri, collecting all overlapping intervals takes O(|ri|) time. For

the same reason, Current Read construction also has O(N) time complexity. In irreducible edge

collection step, for each read ri, read ej ∈ Ei is collected by SOF where Ei is the set of all reads

that form an irreducible edge with ri. For each ej ∈ Ei, Remove-Transitive function is called at
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most |βi,j| times where |βi,j| represents overlap length between ri and ej . In each call, it performs

interval splitting by traversing |Ci[k]| intervals where |Ci[k]| is the number of intervals present in

Ci[k] for |ri| − βi,j < k ≤ |ri| − µ + 1. In case of the genome sequence, generally, |Ci[k]| is

bounded by the coverage d of read set R except in case of repeat sequences. Assuming all input

sequences are equally likely, for ri, at most
∑|Ei|
j=1 |βi,j|d interval traversal are performed. So for

all ri ∈ R, total complexity of this step is O(B) where B is the sum of the length of all overlaps

represented by the irreducible edges in the string graph. Therefore, we can say that complexity of

the SOF algorithm is O(N +B).

3.3 Implementation

While discussing the methodology in section 3.2 we have assumed that we are building the string

graph for the read set obtained from the single strand of a genome. To incorporate overlaps created

from both forward and the reverse strand, we include reverse complement of each reads in the

read set. Let R̃ denote read set generated by taking reverse complement of all reads in R. So we

consider R′ as our new read set where R′ = R ∪ R̃. We precompute BWTR′ and LR′ . When

we implement SOF algorithm using the method described in section 3.2 , we observe that Overlap

Container takes huge amount of memory space (almost 4 to 5 times more space than SGA). That

happens because R′ is twice the size of R and it collects overlaps by string matching with R′.

To reduce the large memory footprint, we have implemented Overlap Container using external

memory. Instead of keeping all the overlaps in the main memory, SOF writes all overlaps of

the Overlap Container in the disk. Then it iteratively collects overlaps from the disk to a Partial

Container in a chunk by chunk manner. A Partial Container is basically a Overlap Container

which contains overlap information for the subset of reads. We denote Partial Container Qa,b

which only contains overlap information for read ra to read rb. So for a read rj where a ≤ j ≤ b,
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Qa,b[(j mod a) + 1] = QR[j].

While storing overlaps in Qa,b, SOF selects b in such way that memory footprint of Qa,b does not

exceed the memory footprint of BWTR′ . Since BWTR′ is the largest data structure that we must

load temporarily in the memory for the overlap detection, we limit our memory consumption for

Qa,b based on the size of BWTR′ .This ensures that maximum memory usage by SOF does not

exceed beyond the size of BWT.

Algorithm 2
1: procedure COLLECT-IRREDUCIBLE-EDGES(R′, BWTR′ , LR′)
2: QR′ ← CONSTRUCT-OVERLAP-CONTAINER(R′, BWTR′)
3: Write QR′ in Disk
4: b← 0
5: while b 6= 2n do
6: b, E ← COLLECT-IRREDUCIBLE-BY-PARTIAL-CONTAINER(R′, LR′ , b+ 1)

7: return E
8: procedure COLLECT-IRREDUCIBLE-BY-PARTIAL-CONTAINER(R′, LR′ , a)
9: Qa,b ← LOAD-PARTIAL-CONTAINER(a)

10: E ← ∅
11: idx← 0
12: for each ri ∈ R′ do
13: Load Ci from Disk
14: while idx← GETMAXOVERLAP(idx) do
15: I ← Ci[idx]
16: for each t ∈ I do
17: j = LR′ [t]
18: if a ≤ j ≤ b then
19: E ← E ∪ (ri, rj)
20: for each v ∈ Qa,b[(j mod a) + 1] do
21: if v.S < |ri| − µ then
22: REMOVETRANSITIVE(C[idx+ v.S], v.I)

23: Write Ci to Disk
24: return b, E

We have modified algorithm 1 to work for Partial Container and now discuss the modified version

– Algorithm 2. In Collect-Irreducible-Edges function of this algorithm, after constructing Overlap

ContainerQR′ , SOF writes it on the disk (line 2-3). Then SOF iteratively collects irreducible edges
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by calling Collect-Irreducible-By-Partial-Container function (line 4-6). Variable b stores last read

id of the partial container. For this reason, the while loop (in line 5) terminates when filtering

process is done with the Partial Container that contains last chunk of overlaps collected from the

overlap container.

Procedure Collect-Irreducible-By-Partial-Container in Algorithm 2 is similar to Collect-Irreducible-

Edge in Algorithm 1. We only discuss the differences here. In this procedure of Alogrithm 2, SOF

collects overlaps in the partial container (line 9) instead of Overlap Container as in Algoirithm 1,

and performs RemoveTransitive operation using the Overlapping Intervals collected from Partial

Container. As a result, transitive edge removal process described in Algorithm 2 may not remove

all reads that represents transitive edges in the Current Read Ci in just one iteration. This necessi-

tates Ci to be stored in (line 23) and loaded from (line 13) disk in each iteration. Also, since partial

container does not contain overlap information of all reads in R, only reads rj , where a ≤ j ≤ b, is

allowed perform transitive removal by calling RemoveTransitive Function. Lastly, GetMaxOverlap

function (line 14) is slightly modified to take a parameter. GetMaxOverlap(k) returns the lowest

index idx where Ci[idx] 6= ∅ and idx > k. This obviates the necessity to remove all the previously

collected reads that represents irreducible edges.

3.4 Comparison with SGA

Lastly, as SOF uses methods and data-structure described in [SD10] which is later included in the

SGA assembler [SD12], we briefly discuss similarity and difference between the two approaches.

SOF is similar to SGA in identifying overlaps from the sequence data using FM Index. But SOF

follows a completely different approach than SGA in collecting irreducible edges from the set of all

overlaps. After identifying overlaps, SGA performs right extension for each of the overlap interval

using BWT of the reverse reads. When a read is found to reach its terminal point during right ex-
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tension, this read is considered to form an irreducible edge and all other non-terminated reads with

the same extension are discarded as transitive edge forming reads. On the other hand, SOF doesn’t

perform the right extension and consequently, doesn’t need to have two BWTs (both for forward

and reverse reads) simultaneously in the memory. Instead, SOF stores all the overlaps for all of the

reads in Overlap Container. Then for each read, using the overlap information stored in the overlap

container, SOF identifies overlaps with maximum overlap length and considers them as irreducible

edge forming reads. Common overlaps between the read and its overlaps with maximum length

are discarded as transitive edge forming reads. We also observe that during the right extension

stage, SGA iterates over all characters in the alphabet set to check whether it is possible to extend

the sequence with that particular character. For a small alphabet set as in genome sequence, the

cost for iterating over alphabet set is negligible, but for a set of sequence with larger alphabet set

(e.g. protein sequence) the cost would be significant. Since SOF doesn’t require to iterate over

alphabet set in any stage, we hypothesize that our approach will significantly perform better for

the sequence set with large alphabets.
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CHAPTER 4: RESULTS AND DISCUSSION

4.1 Dataset and Experiment Setup

We have implemented our algorithm SOF using C++11 and compared its performance with the

performance of SGA. SGA provides two string graph construction algorithm based on both exact

and inexact overlap. We call SGA-Inexact and SGA-Exact to subprograms based on inexact and

exact overlap respectively. We compared the performance of SOF with both SGA-Inexact and

SGA-Exact. Like FSG, we have included our program as a plugin of SGA. Therefore, we can

compare the performance on the same datasets that have been preprocessed by the same prepro-

cessing pipeline. However, we have not included FSG in our comparison because FSG requires

input read sequence dataset and BWT made from both the original read sequences and their reverse

complements, but FSG does not provide any subprogram to do that processing.

We have compared the performance on 5 datasets: Arabidopsis thaliana (SRR7637136), Caenorhab-

ditis elegans (SRR7594466), Deinococcus radiodurans (SRR1027618), Escherichia coli (SRR857279)

and Danio rerio (ERR2094318) . For each dataset, we have compared the performance of three

different minimum overlap length: 55%, 65% and 75% of the read length. Table 4.1 shows the size

information of these 5 dataset in terms of the number of reads, read length, and number of base

pair.

All these dataset have gone the through the same preprocessing steps of SGA (preprocess, in-

dex, correct, index, filter ) with default parameters. We have performed BWT indexing using the

ropebwt algorithm. Following the examples provided for the sample data in SGA implementation,

we have chosen the value of -x parameter to be 2 in the filter step. SGA constructs the string graph

through overlap subprogram of the assembly pipeline.
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Table 4.1: Size information for 5 paired-end sequence dataset

Number of reads Read length Number of base pair
A. thaliana 25,190,636 101 5.1G
C. elegans 67,586,475 76 10G
D. radiodurans 27,063,778 90 4.9G
E. coli 4,273,258 150 1.3G
D. rerio 64,904,138 101 13.1G

We have executed overlap subprogram in its default settings (i.e. in serial processing mode). SOF

constructs string graph by execution of the sof subprogram. Since SOF requires BWT to be built

from both original read and their reverse complement, we have written a subprogram indexSOF

which builds BWT of both forward and reverse reads using ropebwt algorithm. We executed

indexSOF on the preprocessed data, before executing sof subprogram.

We conducted our experiment on a cluster server node built using Intel(R) Xeon(R) CPU E5-2640

v4 2.40GHz processor with 32 cores and 512G RAM. The result of our experiment is shown in

table 4.2 and 4.3.

4.2 Results and Discussion

From the experiment (table 4.2), we observe that SOF is at least 2.3 times faster than both SGA-

Inexact an SGA-Exact. We also observe that with the decrease of minimum overlap length, per-

formance ratio measured by (SGA time)/(SOF time) generally increases suggesting better time

efficiency of SOF for lower minimum overlap length. In terms of memory, SOF takes almost same

amount of memory as SGA (table 4.3). This is because of the implementation technique followed

by SOF. However, we also see few cases where memory consumption of SOF is higher than SGA

with highest (SOF memory/ SGA memory) being 1.8 .
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Table 4.2: Performance comparison in terms of run-time among SGA-Inexact, SGA-Exact and
SOF for five datasets with three different minimum overlap length for each datase

Dataset
Minimum
overlap
(% of read length)

SGA-Inexact
time (second)

SGA-Exact
time (second)

SOF time
(second)

SGA-Inexact
time/SOF time

SGA-Exact
time/ SOF time

A. thaliana
55 16414 15900 4286 3.8 3.7
65 12553 12642 3880 3.2 3.3
75 10523 11100 3142 3.3 3.5

C. elegans
55 13810 16273 3400 4.1 4.7
65 8880 11128 2780 3.2 4
75 6592 8311 2174 3 3.8

D. radiodurans
55 1748 2409 749 2.3 3.21
65 1468 1913 600 2.4 3.2
75 1248 1386 503 2.5 2.75

E. coli
55 1269 1133 493 2.6 2.3
65 1125 1039 440 2.6 2.4
75 1007 939 384 2.6 2.5

D. rerio
55 175895 205760 25787 6.8 8
65 92997 74987 16293 5.7 4.7
75 44342 37332 10311 4.3 3.7

4.3 Validation

Finally, we validate the correctness of our implementation by comparing the assembly quality

of the resulting string graph constructed by SGA-Inexct, SGA-Exact, and SOF. We performed

assembly of the string graph constructed from E. coli and A. thailana dataset using the assemble

subprogram of the SGA pipeline with minimum overlap length being 75% of the read length (same

minimum overlap length is used in the string graph construction step). We compared the assembly

quality using QUAST software [GSVT13]. Table 4.4 shows that the quality of assembled con-

tigs generated from the string graph of SGA-Inexact, SGA-Exact and SOF are almost identical

indicating the identity in the string graph constructed by these three algorithms.
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Table 4.3: Performance comparison in terms of memory among SGA-Inexact, SGA-Exact and
SOF for five datasets with three different minimum overlap length for each dataset

Dataset
Minimum
overlap
(% of read length)

SGA-Inexact
memory (MB)

SGA-Exact
memory (MB)

SOF memory
(MB)

SOF memory/
SGA-Inexact
memory

SOF memory/
SGA-Exact
memory

A. thaliana
55 2439 2440 2791 1.1 1.1
65 2439 2439 2959 1.2 1.2
75 2439 2439 3079 1.3 1.3

C. elegans
55 2154 1279 2327 1.1 1.8
65 2153 2153 2400 1.1 1.1
75 2152 2152 2537 1.1 1.2

D. radiodurans
55 452 452 508 1.1 1.1
65 448 449 496 1.1 1.1
75 448 448 558 1.2 1.2

E. coli
55 258 259 325 1.3 1.3
65 258 258 346 1.3 1.3
75 258 258 361 1.4 1.4

D. rerio
55 6675 6675 6503 1 1
65 6673 6673 6475 1 1
75 6669 6670 6396 1 1

Table 4.4: Assembly quality comparison for the string graph constructed by SGA-Inexact (SGA-
In) SGA-Exact (SGA-Ex) and SOF on e.coli dataset and a.thaliana dataset

E. coli dataset A. thaliana dataset
SGA-In SGA-Ex SOF SGA-In SGA-Ex SOF

No. of contigs (>=0 bp) 705 705 705 704856 704856 707567
No. of contigs (>= 5000 bp) 117 117 117 3939 3939 3939
No. of contigs (>= 10000 bp) 93 93 93 471 471 471
No. of contigs (>= 25000 bp) 63 63 63 2 2 2
No. of contigs (>= 50000 bp) 29 29 29 0 0 0
Total length (>= 10000 bp) 4339159 4339159 4339159 5869635 5869635 5869635
Total length (>= 25000 bp) 3846153 3846153 3846153 52791 52791 52791
Total length (>= 50000 bp) 2554704 2554704 2554704 0 0 0
Largest contig 158085 158085 158085 26896 26896 26896
N50 55046 55046 55046 3062 3062 3062
N75 35706 35706 35706 1576 1576 1576
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CHAPTER 5: CONCLUSION

In this thesis, we propose a novel and linear time algorithm SOF for constructing string graph. Our

work takes the idea of overlap detection using FM-index from [SD10], but applies a novel approach

of irreducible edge collection and transitive edge removal using the property of irreducible edge

and transitive edge. We implemented our algorithm and executed the program on five real datasets

for three different minimum overlap length. Experimental result shows that our program SOF is at

least 2.3 times faster than the most popular string graph-based assembler SGA. We have designed

SOF in such way that it does not take more memory than the memory needed to store two BWT

of reads. For this reason, SOF takes almost same space as SGA. Therefore, in this thesis, we are

able to show that it is possible to increase the speed of string graph construction algorithm without

compromising space efficiency.

We have open sourced our implementation so that anyone can use this program to efficiently con-

struct string graph. String graph construction is the major step in the string-graph based assembly.

However there are other preprocessing steps and post processing steps required to perform com-

plete assembly operation. SGA has already developed all the necessary preprocessing and post-

processing steps. We have implemented this program as a plug-in of SGA so that users can easily

access the steps provided in SGA.

Our proposed algorithm is alphabet size independent. For this reason, this algorithm is supposed to

perform significantly better that other existing algorithms when sequence data has larger alphabet

size. Therefore, we plan to explore the efficiency of SOF in sequence assembly of larger alpha-

bet size. [ZYY17] has already shown the usefulness of string graph in homolog detection from

metagenomic data. In that paper, authors constructed string graph from the metagenomic peptide

sequence. Since alphabet size does not preclude efficiency of SOF, we believe that SOF has the
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potential to be the best program in metagenomic homolog search.
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APPENDIX : LIST OF ABBREVIATIONS
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BWT Borrows Wheeler Transform

FSG Fast String Graph

NGS Next generation Sequencing

SGA String Graph Assembler

SOF String graph construction using Overlap Filtering
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